Boletín N° 2

Ventanas Infrarrojas, una solución por seguridad y riesgo eléctrico

Qué son las ventanas infrarrojas?

Una Ventana Infrarroja (IR) es un dispositivo hecho de un material transmisivo a la Radiación Infrarroja (IR) utilizado para separar ambientes de condiciones diferentes en cuanto presiones, temperaturas, humedades, y contaminaciones, manteniendo dichos sistemas cerrados y protegidos, permitiendo que pase la energía radiante emitida por los objetos confinados y mediante el uso de cámaras termográficas poder detectar con seguridad para el termógrafo la condición de falla que puedan tener permitiendo actualizar los programas de mantenimiento predictivo y preventivo para garantizar la confiabilidad y seguridad de operación de los equipos.

Materiales de las ventanas IR y su Transmisividad

Existen varios tipos de materiales para utilizar en ventanas IR. La selección específica usualmente está orientada según la aplicación, las condiciones ambientales, temperatura, la longitud de onda y consideraciones de costos. Por ejemplo, si se requiere la utilización de una ventana para detectar altas temperaturas en un ambiente que supere los 150°C, que es una condición exigente, hay que ser cuidadosos para seleccionar el material adecuado.

Es importante tener en cuenta también el ambiente en que va a trabajar la ventana, pues materiales diferentes pueden reaccionar de manera diferente a ambientes industriales húmedos, ácidos o alcalinos, e incluso se comportan de manera diferente a los esfuerzos mecánicos como los generados por vibraciones.

Los diferentes materiales tiene también diferentes transmisividades y es necesario tener en cuenta que éstas no son constantes para todos los rangos de temperatura ni en todo el rango espectral IR donde se usan las cámaras termográficas, tanto en longitudes de onda media MW(3µ a 5µ) como en longitudes de onda larga LW(8µ a 15µ).

Aunque existen varios materiales que tienen muy buena transmisividad en el rango de longitudes de onda IR, como el diamante y el Cloruro de Sodio (NaCl) entre otros, sin embargo desde el punto de vista práctico y dependiendo de la aplicación, los materiales que tienen buena transmisividad en el rango IR son los siguientes:

  • Fluoruro de calcio (CaF2)
  • Zafiro (Al2O3)
  • Polímero IR
  • Seleniuro de Zinc (ZnSe)
  • Germanio (Ge)
  • Fluoruro de Bario (BaF2)

tabla1

 En la Tabla 1 podemos distinguir claramente las propiedades y desempeños de los diferentes materiales. El Germanio (Ge) que es de alto costo es el material preferido para la construcción de lentes para cámaras termográficas por su robustez y excelentes características transmisivas en toda la banda espectral de las cámaras IR. Es de anotar que el costo de la óptica de una cámara termográfica está alrededor del 45% del valor de la misma en donde el lente principal es el componente óptico de más valor. Por tanto por su costo no sería un material candidato a ser usado en ventanas IR para aplicaciones industriales rutinarias.

Igualmente el Seleniuro de Zinc (ZnSe) es un material costoso y se utiliza para construir ventanas IR en casos muy especiales como en aplicaciones de altas temperaturas, o para carcasas de cámaras termográficas utilizadas para seguridad o monitoreo en línea de procesos o de equipos a la intemperie como en subestaciones eléctricas de patio.

El fluoruro de Bario (BaF2) por ser un material tóxico es de uso prohibido ambientalmente.

Después de este breve análisis, para aplicaciones industriales en tableros eléctricos y equipo eléctrico en general por el factor costos de materiales nos queda para seleccionar el cristal de Fluoruro de Calcio (CaF2) y el Polímero IR.

El Grafico 1 muestra el comportamiento diferente que tienen las transmisividades de los diversos materiales a través del espectro de IR. Se debe notar que algunos materiales como el Zafiro (AL2O3) no serán adecuados para ser utilizados con una camera de longitud de onda larga LW (8µ a 15µ). Otros materiales como el Seleniuro de Zinc (ZnSe) y el Germanio (Ge) son adecuados para uso en MW y en LW, principalmente utilizados para lentes de cámaras termográficas y aplicaciones especiales.

Dada la variabilidad de transmisividades a través de diferentes longitudes de ondas, se necesita definir la taza de transmisión a una longitud de onda específica. Las investigaciones han mostrado que para Mantenimiento Predictivo (PdM) de esquipo eléctrico y mecánico en general la mayoría de las fallas se encuentran longitudes de onda cerca de 9µm en la banda LW y cerca de 4µm en la banda MW.

Para las medidas de temperaturas precisas, es irrelevante si el coeficiente de la transmitancia de la ventana es 90%, 50% u otro valor. Lo que sí es importante es que el termógrafo conozca precisamente la taza de transmisividad para el rango de longitud de onda donde se pueden encontrar normalmente las fallas. Entonces, cuando el termógrafo digita el valor correcto de emisividad (ε), ajustado en la cámara o en el software, teniendo en cuenta la transmisividad de la ventana, el cálculo final de la temperatura será preciso y fiable. Sin embargo, si el termógrafo no conoce la transmisividad real, y no ajusta la emisividad en su cámara, los errores pueden ser significativos.

Una manera práctica y fácil de conocer la transmisividad de una ventana, es precisamente aprovechar cuando se está instalando la ventana, o cuando se está haciendo mantenimiento al tablero eléctrico, utilizando un objeto caliente a una Temperatura promedio de las fallas esperada p.e. un recipiente con agua caliente, siguiendo los siguientes pasos:

  • Tome un recipiente con agua caliente y coloque un material adhesivo de alta emisividad y conocida como un trozo de cinta aislante o un sticker de emisividad patronada.
  • Introduzca a la cámara una emisividad ε=1.
  • Mida la temperatura del objeto sin ventana.
  • Coloque la ventana en frente de la cámara.
  • Ajuste la emisividad de la cámara hasta lograr la temperatura inicial medida en el punto 3.
  • Registre este valor logrado como la transmisividad efectiva de la ventana IR.

grafico1

 

Flururo de Calcio (CaF2) vs. Polímero IR:

De acuerdo a lo aquí tratado, los materiales que finalmente se consideran viables por razones económicas y ambientales son el Polímero IR y el fluoruro de calcio. Sin embargo hay diferencias significativas entre uno y otro material especialmente en lo referente a su vida útil, su transmisividad en todo el rango espectral IR, y su desempeño mecánico.

 figura1

Tipos de Ventanas

Tanto las ventanas fabricadas en polímero como las fabricadas en fluoruro de calcio, vienen en diámetros estandarizados de 2” (50 mm), 3” (75 mm), y 4” (100 mm) (Ver Figura 1). No se fabrican en diámetros mayores debido a las exigencias mecánicas que deben cumplir, y es claro que a más de 4” (100 mm) dichas exigencias pueden ser incumplidas.

Sin embargo con el polímero y la rejilla que lo sostiene se pueden fabricar ventanas rectangulares de dimensiones tanto estandarizadas como a la medida de necesidades concretas, al igual que si se requiere cubrir equipos cuya geometría implique acomodarse a curvaturas, ello es posible dada la ductilidad del polímero, fabricando igualmente la rejilla con la misma curvatura requerida.

Campo de visión a través de una ventana

Se define como campo de visión, Field of View (FOV) de una cámara termográfica como el ángulo tanto horizontal como vertical del lente de la misma. El valor típico del FOV de una cámara termográfica es de 24°x22°, sin embargo dependiendo del fabricante las cámaras pueden tener diferentes campos de visión. Así que, se recomienda hacer los cálculos basados en lentes estándar (ya que un lente de gran angular quizás no esté disponible). Se debe notar que el cálculo asume que el FOV empieza en la cubierta del panel y se extiende a distancia (d), de la cubierta del panel hasta los componentes objetivo, es decir su profundidad. La longitud a lo largo de ese FOV es una distancia (D). D se calcula multiplicando la distancia (d) por el tangente de la mitad del ángulo del lente y duplicando el resultado.

Teniendo en cuenta lo anterior, se requiere previamente seleccionar el diámetro de la ventana y hacer los cálculos correspondientes para ver que tanto se puede cubrir en D, dependiendo del campo de visión de la cámara (FOV) y del diámetro de la ventana. Debe tenerse especial cuidado en lo cálculos para garantizar el cubrimiento de todos los tramos vertical y horizontal, aprovechando que la cámara se puede separar un poco de la ventana, y que además, a través de la ventana IR la cámara puede ampliar su visión si se inclina hacia arriba y hacia abajo como también hacia los lados, circunstancia que según la experiencia triplica la visión de la cámara permitiendo mediante este factor de 3 ampliar su visión al interior del tablero que se esté inspeccionando, lo cual es un factor definitivo para seleccionar el diámetro adecuado de una ventana IR, incluso se puede llegar a la decisión de requerirse más de una ventana en un mismo gabinete.

Procedimiento de Instalación

De la instalación correcta de la ventana infrarroja (Ver Figura 2) depende mucho la vida útil de la misma como también su desempeño y utilidad en el largo plazo del panel y carcasa del equipo. La instalación de una ventana IR no riñe con la clasificación contra del panel eléctrico, pues así como se instalan instrumentos y accesorios, la ventana Ir es un accesorio más que lo único que debe cumplir es su desempeño dieléctrico y su clasificación IP que debe ser por lo menos igual o superior a la del panel eléctrico.

Es importante identificar los objetos específicos dentro del panel focalizándose en conexiones atornilladas, uniones ponchadas, o similares y estas áreas se consideran como los puntos más susceptibles a calentamientos. Estos componentes incluyen:

  • Conexiones ce cables
  • Conexiones los barrajes
  • Aislador o conexión de los cortacircuitos
  • Interruptores, contactores y relés

Ejecute una inspección visual rápida del interior del panel eléctrico para identificar estos objetivos. Una vez identificados, de acuerdo a la experiencia determine una emisividad promedio con excepción de componentes que sean reflectivos, mientras el equipo no esté energizado. Los métodos comunes incluyen el uso de cinta eléctrica, pintura de alta temperatura o etiquetas adhesivas de emisividades patronadas. Después que se haya completado la estandarización de la emisividad, es importante fotografiar cada objetivo ya que estas fotos se usarán como plantillas de reportes y referencias en el futuro.

Herramientas: Antes de empezar cualquier instalación, chequee y asegure tener todas las herramientas requeridas, como taladro, brocas, copa-sierras de diferentes diámetros, centro punto, martillo, limas, pintura anticorrosiva, equipo de seguridad como guantes, gafas, mientas requeridas también es proporcionada por el fabricante.

Etiquetas: A toda ventana instalada se le debe colocar sobre el panel y debajo de misma una etiqueta con información importante para futuras inspecciones. Puede contener dos partes, una parte que identifica identificar la ventana y como se usa y la otra parte tener la siguiente información la cual será crítica en la inspección infrarroja:

Cada ventana de inspección debe tener un número único. Esto será inestimable, especialmente si hay varias ventanas en un panel eléctrico.

Documente el tipo de ventana (MW o LW) y la longitud de onda efectiva.

Registre la transmisividad de la ventana, como se explicó en el numeral 2 último párrafo como también el valor de compensación que se encontró.

Ajuste la emisividad en la cámara para compensar por las pérdidas de emisividad y transmisión. Multiplica la emisividad del objetivo por la tasa de transmisión de la ventana.

Línea de Base: Después de completar la instalación de la ventana, y de energizar el equipo, dejando un tiempo para que todos los componentes adquieran su temperatura de trabajo, el termógrafo debe ejecutar una inspección para tener una línea base y comparar con las futuras inspecciones conducir una inspección de punto de referencia (benchmark) para establecer la línea de base.

Certificaciones y estándares. (Ver Tabla 2)

Sobre el tema podemos hacer las siguientes consideraciones:

  • a) La única norma que aplica específicamente a ventanas infrarrojas es el UL50V – se considera más como una clasificación que una norma. Específicamente esta norma establece: “Las ventanas de visualización infrarrojas ( nfrared viewports) son aperturas fijas, las cuales consisten de uno o más aberturas o un material solido de transmisión infrarroja, rodeado por un bisel o montura, las cuales permiten el paso de la radiación infrarroja.”
  • b) UL508 se refiere equipos de control industrial y paneles de control por debajo 1500 voltios. Los equipos incluidos en estos requisitos se fabrican para el uso bajo una temperatura ambiental de 0-40°C (32-104°F) al menos que se indique su uso en otras condiciones.
  • c) UL508A son clasificaciones para componentes usados en paneles eléctricos. Cubre paneles de control industriales para uso general, con un voltaje de operación de 600V o menos. Este equipo se fabrica para instalaciones ordinarias, en acuerdo con el National Electrical Code (ANSI/NFPA 70), donde la temperatura ambiental no excede 40°C (104°F).
  • d) UL746C es una norma que requiere de pruebas de inflamabilidad e impacto para materiales poliméricos usados en equipos eléctricos. Los cristales de CaF2 no pasan las pruebas de impacto requeridas por esta norma.
  • e) IEEE C37.20.2 Sección a.3.6 es el requisito de impacto y carga para todas las mirillas de visualización instalados en paneles eléctricos de medio y alto voltaje. Los paneles fabricados de cristales o vidrio no cumplen con estos requisitos – por esta razón todas las mirillas de inspección que son instaladas en paneles eléctricos son fabricados en Lexan o Plexiglás. Desafortunadamente, esos materiales no son transmisivos en IR. De las ventanas compatibles con ondas largas, solo el material óptico de polímero reforzado cumple con los requisitos de esta norma.
  • f) El Registro de Lloyd es una verificación de normas de tercera parte o compañías externas, y verifican la calidad y el diseño.
  • g) Las normas de protección de Entradas (Ingress) certifican que una carcasa puede sellarse contra ciertos niveles de contaminantes en el ambiente. IP65 y NEMA 4 son normas equivalentes indicando protección contra el polvo y la entrada de agua.
  • h) Resistencia contra Arco: Como está definido por IEEE C37.20.7, las pruebas de resistencia de arcos solo se aplican a sistemas de paneles eléctricos. Los paneles eléctricos resistentes a Arcos eléctricos son probados con cualquier número de accesorios instalados (con las cubiertas cerradas), y el sistema debe contener, controlar, y redireccionar los gases de alta temperatura generados durante una explosión de arco en la dirección opuesta a donde los trabajadores manejan el equipo. Debido a la gran variedad en configuración de paneles, geometría y diseño, los resultados de una prueba específica a un panel no se aplican estrictamente a otro panel – particularmente si ese panel no tiene características de resistencia a los arcos eléctricos.

Los componentes (como las ventanas IR) nunca pueden llevar una clasificación de arcos porque naturalmente no tienen dichas características como no las tienen otros accesorios instalados en los paneles como manijas, luces indicadoras, instrumentos, botoneras, e incluso ventanas IR. Las características que permiten que un panel eléctrico proteja a una persona de los efectos de una explosión de arcos son una serie compleja de refuerzos estructurales, y puertas de desfogue los cuales cambian la dirección de la explosión que se general a muy altas presiones y que las mismas deben ser redirecionadas. Se debe notar que las tres marcas más conocidas de ventanas IR han sido exitosas en cuanto a pruebas de arcos eléctricos. Por lo tanto, esto no significa que estas ventanas sean “resistentes a arcos”. Como se había mencionado, es el panel eléctrico que se ha mostrado ser resistente a arcos, cuando los componentes están en lugar en el sentido de que su diseño permita redireccionar los desfogues en dirección opuesta a la ubicación normal de las personas.

tabla3

Implicaciones de las Normas NFPA 70B, NFPA 70E Y RETIE

Arco Eléctrico y sus Riesgos

Un Arco Eléctrico es un corto circuito que crea una explosión de muy alta presión. La mayoría de los incidentes ocurren por algún tipo de interacción humana como dejar caer herramientas, contacto accidental con partes energizadas, por cambio de la condición del equipo de cerrado y protegido a abierto y desprotegido. El arco inicial evapora el conductor de cobre, este produce una pequeña nube híper conductiva de plasma de cobre y gases ionizados. La nube conductiva entonces forma un puente, cambiando el corto circuito a fase-fase la cual crece en intensidad, produciendo un flash enceguecedor junto con temperaturas extremadamente altas (más de 21.000 °C). La explosión se alimenta por sí sola, y el calor convierte todo el material alrededor de la falla (cobre, hierro, material epóxico, pvc etc) a plasma. El conductor de cobre expande 67,000 veces su tamaño inicial en una fracción de un segundo. Es esta expansión rápida la que crea la ola de presión de miles kilogramos de fuerza que destruye y funde los materiales de los paneles eléctricos y dispara metralla hacia cualquier cosa en toda su trayectoria, a velocidades superiores a 1.100 km/h. Es de anotar que ningún material puede resistir este nivel de presiones y temperaturas, y aquí es donde se explica que el diseño del panel debe cumplir con la norma IEEE C37.20.7 garantizando el re-direccionamiento de la explosión hacia el lado contrario de donde puedan estar ubicadas las personas.

NFPA 70B – Práctica Recomendada para Mantenimiento de Equipo Eléctrico

El National Fire Protection Association (NFPA) desarrolló la norma NFPA 70B para Mantenimiento de Equipo Eléctrico. En el capítulo 4 insiste en que vale la pena establecer en las plantas un Efectivo Mantenimiento Eléctrico Preventivo “la confiabilidad puede ser diseñada y construida dentro del equipo, pero se requiere un mantenimiento para conservar esa confiabilidad”.

El equipo eléctrico tiene un deterioro normal, y su falla no es inevitable. Tan pronto como un equipo es instalado, empieza un proceso normal de desgaste.

Un efectivo programa de Mantenimiento Preventivo (EMP) identifica y reconoce estos factores y aporta medidas para corregirlos

Igualmente esta norma establece que las inspecciones termográficas de sistemas eléctricos son beneficiosos para reducir el número de fallas catastróficas de equipos y paradas de planta no programadas y que las mismas pueden reducir la inspecciones visuales y las tediosas inspecciones manuales y son específicamente efectivas en situaciones de detección con anticipación. La Norma NFPA 70B ha sido eficiente en el salvamento de vidas, protegiendo los activos de las plantas y reduciendo el periodo de inactividad de la maquinaria

NFPA 70E

La norma NFPA 70E establece que “Conductores eléctricos y componentes energizados a los cuales un empleado podría estar expuesto deben colocarse en una condición eléctricamente segura antes de que el empleado trabaje dentro de los límites de aproximación para la condición de los mismos”

Se requiere por tanto programas de entrenamiento, que las tareas estén restringidas a personal calificado, cumplir los requisitos LOTO, establecer análisis de panoramas de riesgos, tramitar los correspondientes permisos para trabajos en caliente, Equipo de Protección Personal (EPP) adecuado, y cumplir las exigencias para equipos especiales, entre otras exigencias.

Trabajar con ventanas IR mantiene la condición del panel Cerrada y Protegida, y no hay incremento inherente del riego, teniendo en cuenta que “bajo condiciones normales de operación, es improbable que equipos energizados cerrados que han sido adecuadamente instalados y mantenidos posean peligro de arco eléctrico.” Efectuar inspecciones termográficas a través de ventanas IR es una tarea de similar riesgo a la lectura de medidores en un panel eléctrico es decir nivel 0 y por tanto la exigencia en cuanto a nivel de EPP es 0.

RETIE

De alguna manera el Reglamento Técnico de Instalaciones Eléctricas RETIE emitido por el Ministerio de Minas y Energía de Colombia, ha adoptado la filosofía de la norma NFPA 70E, según algunos de sus artículos como:

a) Numeral 5.1. Evaluación del Riesgo:

“Para la elaboración del presente Reglamento se tuvo en cuenta que los elevados gastos en que frecuentemente incurren el Estado y las personas o entidades afectadas, cuando se presenta un accidente de origen eléctrico, superan significativamente las inversiones que se hubieran requerido para minimizar o eliminar el riesgo.”

b) Numeral 5.2.Factores de Riesgo eléctrico más comunes:

“El tratamiento preventivo de la problemática del riesgo eléctrico obliga a saber identificar y valorar las situaciones irregulares, antes de que suceda algún accidente. Por ello, es necesario conocer claramente el concepto de riesgo de contacto con la corriente eléctrica. A partir de ese conocimiento, del análisis de los factores que intervienen y de las circunstancias particulares, se tendrán criterios objetivos que permitan detectar la situación de riesgo y valorar su grado de peligrosidad. Identificado el riesgo, se han de seleccionar las medidas preventivas aplicables.

c) RETIE Artículo 7 Programa de Salud Ocupacional numeral e):

“Establecer y ejecutar las modificaciones en los procesos u operaciones, sustitución de materias primas peligrosas, encerramiento o aislamiento de procesos, operaciones u otras medidas, con el objeto de controlar en la fuente de origen y/o en el medio, los agentes de riesgo.”

Es claro entonces que bien sea que nos acojamos a la NFPA 70E o al RETIE, utilizar ventanas IR es la mejor y más conveniente opción si queremos eliminar los riesgos eléctricos en un 99% y además es la mejor desde el punto de vista técnico y económico.

Análisis costo-beneficio y Recomendaciones

Los estudios de tiempo indican que las inspecciones tradicionales de paneles abiertos consumen mucho tiempo. El costo de las horas de trabajo fácilmente superan los $160.000.00 (0,30 SMMLV) por panel (Ver tabla 5).

Vestirse y desvestirse con EPP es otra tarea costosa que acompaña a las inspecciones tradicionales.

El uso de ventanas virtualmente elimina todo el tiempo de espera y de EPP, y se puede usar casi el 100% en la inspección como tal. Esto significa que se ahorra más de un 90% del tiempo típicamente requerido para ejecutar inspecciones termográficas tradicionales (Ver Tabla 4). Por el ahorro de horas de trabajo que ofrecen las ventanas IR, la mayoría de programas de ventanas ofrecen un ROI desde el primer o segundo ciclo de inspección.

 tabla4

tabla5

Mitos sobre el uso de las ventanas IR

  • La ventana Ir protege a las personas de explosión por arco eléctrico?
    Las ventanas IR no pretende proteger al usuario de las consecuencias de un arco eléctrico, lo que se pretende es eliminar adicionales causas de arco eléctrico durante la inspección y reemplazar una actividad de alto riesgo por una estrategia de eliminación o reducción del riesgo durante la inspección. Las ventanas IR permiten inspecciones a paneles eléctricos cerrados cumpliendo los mandatos de NFPA y RETIE, de mantener el sistema “cerrado y protegido” para eliminar el riesgo en cuanto a sea posible en contraposición contra otros métodos ya agotados.
  • Instalar ventanas IR convierte a un panel eléctrico clasificado como no resistente al arco eléctrico a un equipo resistente al arco eléctrico? Las ventanas deben tener una clasificación contra arco?
    Es el panel eléctrico no sus componentes individuales los que deben cumplir la clasificación de las normas en el sentido de que su diseño debe permitir la mitigación y redireccionamiento de la onda explosiva. Ni las ventanas IR ni las mirillas de inspección visual, ni los medidores y accesorios del panel eléctrico deben ser resistentes al arco eléctrico, simplemente no deben interferir con cualquier mecanismo de seguridad y deben cumplir con los aislamientos requeridos por las normas. Los pernos de un panel eléctrico tienen la función de sostener las cubiertas mas no son resistentes al arco eléctrico pues no existe material que soporte los elevados esfuerzos mecánicos generados por las presiones de una expansión de más de 67.000 veces de los metales especialmente el cobre que ocurre durante un evento catastrófico de arco eléctrico. El panel debe ser diseñado únicamente para redireccionar y mitigar los efectos de una explosión causada por un arco eléctrico. La inspección a paneles eléctricos cerrados mediante la utilización de ventanas IR elimina el 99,9% de las causas de arco eléctrico durante la inspección. Por tanto el beneficio sustancial que nos da el uso de ventanas IR es el cumplimiento de NFPA 70E y RETIE enfocado en la reducción del riesgo de un accidente por arco eléctrico.

Conclusiones

  • La ventana Ir es un dispositivo que tiene por objeto mitigar el riesgo de arco eléctrico en un 99,9% durante la inspección termográfica, cumplimiento de las normas NFPA y RETIE.
  • Existen varios materiales pero en aplicaciones industriales los materiales viables por razones económicas y ambientales son el Polímero IR traslúcido y no traslúcido al visible, y el Fluoruro de Calcio (CaF2).
  • Los desempeños de estos dos materiales son bien diferentes siendo el polímero una opción con mejor resistencia a los ambientes alcalinos, húmedos y ácidos, con una muy buena establead de la transmisivdiad en el tiempo.
  • La ventanas IR son normalmente circulares pero al utilizar polímero se pueden construir en formas rectangulares de dimensiones estandarizadas o la medida de las necesidades, incluso se acomoda a formas curvas.
  • La instalación es rápida y sencilla, sin embargo se tiene que medir en campo la transmisividad de la ventana, ajustar consecuentemente la emisividad en la cámara, tener en cuenta el FOV de la cámara a utilizar y garantizar el cubrimiento de todos los componentes al interior de los paneles eléctricos, y recoger la máxima información posible y documentarla al momento de la instalación.
  • La ventanas deben cumplir normas IEEE, UL, y la clasificación IP del tablero eléctrico.
  • La ventanas IR dan un rápido retorno sobre la inversión ROI

Ernesto Gallo Martínez:

  • Ingeniero Mecánico de la Universidad Tecnológica de Pereira.
  • Alta gerencia. Universidad de los Andes
  • Programa de Alta Dirección Empresarial- PADE – en Instituto de Alta Dirección Empresarial – INALDE, Universidad de la Sabana – Bogotá.
  • Diagnostico y mantenimiento de Transformadores. Transformer Maintenance Institute,TMI S.D. Myers Akron Ohio USA
  • “Life of a Transformer” – Seminarios Doble Eng, USA 2006, 2008, 2010 y 2012
  • Instructor en Termografìa con Certificación Nivel III:
    • The Profesional Thermographers Asociation – Seattle USA
    • Snell Infrared Toronto Canada
  • Certificación Nivel I en Emisiones Acústicas, Vibraciones, Alineación Láser, y Lubricación
  • Conferencista e Instructor en Diagnóstico y Mantenimiento de Transformadores
  • Autor del Libro “Diagnóstico y Mantenimiento de Transformadores en Campo”
  • Fundador y actualmente Presidente de Transequipos S.A.
Offers and bonuses by SkyBet at BettingY com